On the Approximation Numbers of Sobolev Embeddings on Singular Domains and Trees

نویسندگان

  • W. D. EVANS
  • D. J. HARRIS
  • Y. SAITŌ
چکیده

Upper and lower bounds are determined for a function which counts the approximation numbers of the Sobolev embedding W 1,p( )/C ↪→ L p( )/C, for a wide class of domains of finite volume in Rn and 1 < p < ∞. Results on the distribution of the eigenvalues of the Neumann Laplacian in L2( ) are special consequences. We dedicate this paper to Jerry Goldstein on his 60th birthday.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On approximation numbers of Sobolev embeddings of weighted function spaces

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights.∗

We study compact embeddings for weighted spaces of Besov and TriebelLizorkin type where the weights belong to Muckenhoupt Ap classes. We focus our attention on the influence of singular points of the weights on the compactness of the embeddings as well as on the asymptotic behaviour of their entropy and approximation numbers.

متن کامل

Counting Via Entropy: New Preasymptotics for the Approximation Numbers of Sobolev Embeddings

We study the optimal linear L2-approximation by operators of finite rank (i.e., approximation numbers) for the isotropic periodic Sobolev space Hs(Td) of fractional smoothness on the d-torus. For a family of weighted norms, which penalize Fourier coefficients f̂(k) by a weight ws,p(k) = (1 + ‖k‖p), 0 < p ≤ ∞, we prove that the n-th approximation number of the embedding Id : Hs(Td) → L2(T) is cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003